If it's not what You are looking for type in the equation solver your own equation and let us solve it.
200=9.8t^2
We move all terms to the left:
200-(9.8t^2)=0
We get rid of parentheses
-9.8t^2+200=0
a = -9.8; b = 0; c = +200;
Δ = b2-4ac
Δ = 02-4·(-9.8)·200
Δ = 7840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7840}=\sqrt{16*490}=\sqrt{16}*\sqrt{490}=4\sqrt{490}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{490}}{2*-9.8}=\frac{0-4\sqrt{490}}{-19.6} =-\frac{4\sqrt{490}}{-19.6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{490}}{2*-9.8}=\frac{0+4\sqrt{490}}{-19.6} =\frac{4\sqrt{490}}{-19.6} $
| 13-1=-2z | | -23=x-16 | | -13=u/9-8 | | 54=-a/11+48 | | -2x-40=-52 | | -5=x/3=-16 | | 289=-17x | | 0=17x-34 | | 14x-1=13+5 | | 2(x+6)=8x-4 | | 3x+5x=5x+25 | | -6/5=5/2x | | 114=19b | | 19-x=-30 | | 3(b-9)=3b+6 | | m+-18=-10 | | 14=v+-6 | | a+2=4a-4 | | -22=2+5x+6 | | 27x+14=50 | | 6(x+1)-10=4(x-1))+2x | | -10+x/3=-4 | | -31=7(x | | 3x+3x-10=62 | | 2(9x+15)+2(7x+5)=360 | | 2(9x+15)+2(7x+5)=-180 | | x+3x-10=62 | | 2(9x+15)+2(7x+5)=180 | | |6x+6|=15 | | x+90+x=1100 | | 6z-5=3z | | 4−0.3x=1 |